且构网

分享程序员开发的那些事...
且构网 - 分享程序员编程开发的那些事

从 C 执行二进制机器代码

更新时间:2023-11-15 23:15:04

代码必须在具有执行权限的页面中.默认情况下,出于安全原因,堆栈和读写静态数据(如非常量全局变量)在没有 exec 权限的情况下映射到页面中.

最简单的方法是使用 gcc -z execstack 编译,它链接你的程序,这样堆栈 全局变量(静态存储)被映射到可执行页面中,并且使用 malloc 进行分配也是如此.

另一种不使一切可执行的方法是将此二进制机器代码复制到可执行缓冲区中.

#include #include #include 字符代码[] = {0x55,0x48,0x89,0xe5,0x89,0x7d,0xfc,0x48,0x89,0x75,0xf0,0xb8,0x2a,0x00,0x00,0x00,0xc9,0xc3,0x00};/*00000000004004b4 55 推%rbp00000000004004b5 <main+0x1>48 89 e5 mov %rsp,%rbp00000000004004b8 <main+0x4>89 7d fc mov %edi,-0x4(%rbp)00000000004004bb <main+0x7>48 89 75 f0 mov %rsi,-0x10(%rbp)'返回42;'00000000004004bf <main+0xb>b8 2a 00 00 00 mov $0x2a,%eax'}'00000000004004c4 <main+0x10>c9离开q00000000004004c5 <main+0x11>c3 回复*/int main(int argc, char **argv) {无效*缓冲;/* 将代码复制到可执行缓冲区 */buf = mmap (0,sizeof(code),PROT_READ|PROT_WRITE|PROT_EXEC,MAP_PRIVATE|MAP_ANON,-1,0);memcpy (buf, code, sizeof(code));__builtin___clear_cache(buf, buf+sizeof(code)-1);//在 x86 上,这只是阻止 memcpy 优化为死存储/* 运行代码 */int i = ((int (*) (void))buf)();printf("搞定.返回:%d", i);返回0;}

输出:

完成这件事.返回:42

运行成功(总时间:57ms)

如果没有 __builtin___clear_cache这可能会中断a> 启用优化,因为 gcc 会认为 memcpy 是一个死存储并优化它.在为 x86 编译时,__builtin____clear_cache 实际上不会清除任何缓存;零额外指令;它只是将内存标记为已使用",因此不会将其存储为已死".(请参阅gcc 手册.)

另一种选择是mprotect包含char code[]数组的页面,赋予它PROT_READ|PROT_WRITE|PROT_EXEC.这适用于 .data 中的局部数组(在堆栈上)还是全局数组.

或者如果它是 .rodata 部分中的 const char code[],你可以给它 PROT_READ|PROT_EXEC.

(在大约 2019 年之前的 binutils ld 版本中,.rodata 被链接为与 .text 相同的段的一部分,并且已经被映射为可执行文件.但是最近的 ld 给了它一个单独的段,所以它可以在没有 exec 权限的情况下进行映射,所以 const char code[] 不会给你一个可执行数组不再,但它曾经如此,所以你可以在其他地方使用这个旧建议.)

following this instructions I have managed to produce only 528 bytes in size a.out (when gcc main.c gave me 8539 bytes big file initially).

main.c was:

int main(int argc, char** argv) {

    return 42;
}

but I have built a.out from this assembly file instead:

main.s:

; tiny.asm
  BITS 64
  GLOBAL _start
  SECTION .text
  _start:
                mov     eax, 1
                mov     ebx, 42  
                int     0x80

with:

me@comp# nasm -f elf64 tiny.s
me@comp# gcc -Wall -s -nostartfiles -nostdlib tiny.o
me@comp# ./a.out ; echo $?
42
me@comp# wc -c a.out
528 a.out

because I need machine code I do:

objdump -d a.out

a.out:     file format elf64-x86-64


Disassembly of section .text:

00000000004000e0 <.text>:
  4000e0:   b8 01 00 00 00          mov    $0x1,%eax
  4000e5:   bb 2a 00 00 00          mov    $0x2a,%ebx
  4000ea:   cd 80                   int    $0x80

># objdump -hrt a.out

a.out:     file format elf64-x86-64

Sections:
Idx Name          Size      VMA               LMA               File off  Algn
 0 .note.gnu.build-id 00000024  00000000004000b0  00000000004000b0  000000b0 2**2
                  CONTENTS, ALLOC, LOAD, READONLY, DATA
 1 .text         0000000c  00000000004000e0  00000000004000e0  000000e0 2**4
                  CONTENTS, ALLOC, LOAD, READONLY, CODE
SYMBOL TABLE:
no symbols

file is in little endian convention:

me@comp# readelf -a a.out
ELF Header:
  Magic:   7f 45 4c 46 02 01 01 00 00 00 00 00 00 00 00 00 
  Class:                             ELF64
  Data:                              2's complement, little endian
  Version:                           1 (current)
  OS/ABI:                            UNIX - System V
  ABI Version:                       0
  Type:                              EXEC (Executable file)
  Machine:                           Advanced Micro Devices X86-64
  Version:                           0x1
  Entry point address:               0x4000e0
  Start of program headers:          64 (bytes into file)
  Start of section headers:          272 (bytes into file)
  Flags:                             0x0
  Size of this header:               64 (bytes)
  Size of program headers:           56 (bytes)
  Number of program headers:         2
  Size of section headers:           64 (bytes)
  Number of section headers:         4
  Section header string table index: 3

now I want to execute this like this:

#include <unistd.h>
 // which version is (more) correct?
 // this might be related to endiannes (???)
char code[] = "x01xb8x00x00xbbx00x00x2ax00x00x80xcdx00";
char code_v1[] = "xb8x01x00x00x00xbbx2ax00x00x00xcdx80x00";

int main(int argc, char **argv)
{
/*creating a function pointer*/
int (*func)();
func = (int (*)()) code;
(int)(*func)();

return 0;
}

however I get segmentation fault. My question is: is this section of text

  4000e0:   b8 01 00 00 00          mov    $0x1,%eax
  4000e5:   bb 2a 00 00 00          mov    $0x2a,%ebx
  4000ea:   cd 80                   int    $0x80

(this machine code) all I really need? What I do wrong (endiannes??), maybe I just need to call this in different way since SIGSEGV?

The code must be in a page with execute permission. By default, stack and read-write static data (like non-const globals) are in pages mapped without exec permission, for security reasons.

The simplest way is to compile with gcc -z execstack, which links your program such that stack and global variables (static storage) get mapped in executable pages, and so do allocations with malloc.


Another way to do it without making everything executable is to copy this binary machine code into an executable buffer.

#include <unistd.h>
#include <sys/mman.h>
#include <string.h>

char code[] = {0x55,0x48,0x89,0xe5,0x89,0x7d,0xfc,0x48,
    0x89,0x75,0xf0,0xb8,0x2a,0x00,0x00,0x00,0xc9,0xc3,0x00};
/*
00000000004004b4 <main> 55                          push   %rbp
00000000004004b5 <main+0x1>  48 89 e5               mov    %rsp,%rbp
00000000004004b8 <main+0x4>  89 7d fc               mov    %edi,-0x4(%rbp)
00000000004004bb <main+0x7>  48 89 75 f0            mov    %rsi,-0x10(%rbp)
'return 42;'
00000000004004bf <main+0xb>  b8 2a 00 00 00         mov    $0x2a,%eax
'}'
00000000004004c4 <main+0x10> c9                     leaveq 
00000000004004c5 <main+0x11> c3                     retq 
*/

int main(int argc, char **argv) { 
    void *buf;

    /* copy code to executable buffer */    
    buf = mmap (0,sizeof(code),PROT_READ|PROT_WRITE|PROT_EXEC,
                MAP_PRIVATE|MAP_ANON,-1,0);
    memcpy (buf, code, sizeof(code));
    __builtin___clear_cache(buf, buf+sizeof(code)-1);  // on x86 this just stops memcpy from optimizing away as a dead store

    /* run code */
    int i = ((int (*) (void))buf)();
    printf("get this done. returned: %d", i);

    return 0;
}

output:

get this done. returned: 42

RUN SUCCESSFUL (total time: 57ms)

Without __builtin___clear_cache, this could break with optimization enabled because gcc would think the memcpy was a dead store and optimize it away. When compiling for x86, __builtin___clear_cache does not actually clear any cache; there are zero extra instructions; it just marks the memory as "used" so stores to it aren't considered "dead". (See the gcc manual.)


Another option would be to mprotect the page containing the char code[] array, giving it PROT_READ|PROT_WRITE|PROT_EXEC. This works whether it's a local array (on the stack) or global in the .data.

Or if it's const char code[] in the .rodata section, you might just give it PROT_READ|PROT_EXEC.

(In versions of binutils ld from before about 2019, the .rodata got linked as part of the same segment as .text, and was already mapped executable. But recent ld gives it a separate segment so it can be mapped without exec permission so const char code[] doesn't give you an executable array anymore, but it used to so you may this old advice in other places.)